
Retrieving Similar Software from Large-scale Open-source Repository
by Constructing Representation of Project Description

Chuanyi Li1,3 a, Jidong Ge1 b, Victor Chang2 c and Bin Luo1

1State Key Laboratory for Novel Software Technology, Software Institute, Nanjing University, Nanjing, China
2School of Computing and Digital Technologies, Teesside University, Middlesbrough, U.K.

3State key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China

{lcy, gjd, luobin}@nju.edu.cn, V.Chang@tees.ac.uk

Keywords: Information Retrieval, Project Similarity, Big Text Data, Learn to Rank.

Abstract: The rise of open source community has greatly promoted the development of software resource reuse in all
phases of software process, such as requirements engineering, designing, coding, and testing. However, how
to efficiently and accurately locate reusable resources on large-scale open source website remains to be solved.
Presently, most open source websites provide text-matching-based searching mechanism while ignoring the
semantic of project description. For enabling requirements engineers to find software that are similar to the
one to be developed quickly at the very beginning of the project, we propose a searching framework based on
constructing semantic embedding for software project with machine learning technique. In the proposed ap-
proach, both Type Distribution and Document Vector learnt through different neural network language models
are used as project representations. Besides, we integrate searching results of different representations with
a Ranking model. For evaluating our approach, we compare search results of different searching strategies
manually using an evaluating system. Experimental results on a data set consisting of 24,896 projects show
that the proposed searching framework, i.e., combining results derived from Inverted Index, Type Distribution
and Document Vector, significantly superior to the text-matching-based one.

1 INTRODUCTION

The large number of open source software products
brings great opportunities and challenges to software
reuse. No matter at which level of reuse, e.g., require-
ments reuse, design reuse, code reuse and module
reuse and product reuse, the most important thing is
to locate reusable artifacts in the massive open source
software repository. For reusing, the earlier the stage
is, the more benefits there are. So, how to find appro-
priate open source projects of similar requirements to
the one to be developed at the very beginning of soft-
ware process has always been an important topic to
be studied these days.

However, at the very beginning of a project, only
the simple description of the product is available.
Many existing software similarity measurement ap-
proaches relying on other software artifacts cannot be

a https://orcid.org/0000-0003-4956-8142
b https://orcid.org/0000-0003-1773-0942
c https://orcid.org/0000-0002-8012-5852

applied. Existing open source software repositories
support keywords based similar project searching ap-
proaches but ignore the deep semantic of text as well
as the concept of software domain knowledge. Upon
deriving query results in this way, users still need to
review many of the retrieved project description with
their idea one by one to check if they are what they
want. Besides, for users without software engineer-
ing background, it is hard for them to pick up exact
keywords for searching.

In this paper, we propose a similar software
searching framework according to software descrip-
tion. Figure 1 shows the main steps of our approach.
First, we construct inverted index, train Doc2Vec
model and train software type predictor for the repos-
itory. Then, apply clustering algorithms on docu-
ment vectors and type distribution vectors respec-
tively to all products to generate clusters for fasten-
ing the searching efficiency. While a query is made,
three different result sets will be given. Next, we
train a ranking model for re-rank the fetched results
in the three sets. For training the type predictor,



Software 

Projects 

Repository

Word Matching

(Inversed Index)

Doc2Vec
Clusters

RII

RD

RT
Type 

Predictor Clusters

Preprocessing

Preprocessing

Query: input software product description

Feedback

Feedback

R
a
n
k

in
g
 

M
o

d
e
l

Projects Data with 

Manually 

Evaluating Results

Feedback

Results

QueryPreparation

Ranking

Construct

Train

Train

Train

Figure 1: Framework of the proposed Software Project Searching Approach.

we try different machine learning algorithms includ-
ing Support Vector Machine (i.e., SVM)(Cortes and
Vapnik, 1995), full connected Neural Network (i.e.,
FNN)(Epelbaum, 2017), Convolutional Neural Net-
work (i.e., CNN)(Kim, 2014) and Long Short-Term
Memory neural network (i.e., LSTM)(Hochreiter and
Schmidhuber, 1997). The experimental results show
that our approach improves the similar software prod-
uct searching results significantly.

In conclusion, we make the following contribu-
tions in this paper:

(1) Organizing a dataset consisting of 24,896 soft-
ware projects for conducting similar software
product searching research. 2000 projects are
used as testing data and the others are used as the
searching database.

(2) Designing and implementing an integrated sim-
ilar software product/project searching approach
by adopting learning to rank techniques.

(3) Developing a reusable manual annotating system
for evaluating different searching methods.

The rest of this article is organized as follows.
Section 2 introduces some related work. Section 3 de-
scribes the dataset. Details of the proposed approach
are illustrated in Section 4. Experiments and evalua-
tions are presented in Section 5. Section 6 concludes
the paper.

2 RELATED WORK

Most existing related work mainly measure project
similarity based on software code or other artifacts.
Lannan Luo et al. (Luo et al., 2017) proposed a binary
code similarity comparison method using the longest

common subsequence to judge the similarity degree
of items according to the code. Naohiro Kawamitsu
et al. (Kawamitsu et al., 2014) proposed a technique
to automatically identify the source code reuse rela-
tionship between two code bases. Shuai Wang et al.
(Wang and Wu, 2017) proposed a new method for
binary code similarity analysis using memory fuzzi-
ness. The main difference between our work and
these is that we measure the natural language simi-
larity but not the code similarity. For non-software
engineering domain text similarity measuring, there
are many existing works based on machine learning
techniques. Lin Yao et al. (Yao et al., 2018) propose
a new LSTM encoder for the existing similarity mea-
surement algorithm of short text. Chenghao Liu et
al. (Liu et al., 2017) proposed an online bayesian in-
ference algorithm for collaborative subject regression
(CTR) model to act on the recommendation system.
Naresh Kumar Nagwani et al. (Nagwani, 2015) pro-
posed a similarity measure of text processing (SMTP)
for knowledge discovery of text collection. Yuhua
Li et al. (Li et al., 2006) proposed an algorithm
that takes into account the semantic information and
word order information implied in sentences. Dif-
ferent from these works, we aim at solving the soft-
ware project description similarity problem by con-
sidering the software engineering domain knowledge
while adopting the machine learning techniques.

3 CONSTRUCTED DATA SET

We prepare the data set according to the large open-
source and business software platform SourceForge
(i.e., https://sourceforge.net). We downloaded the Top
24,896 open-source software projects from Source-



Forge by setting the searching filter of Operating
System to Windows in January of 2018. All these
projects are belonging to 17 categories. The number
of projects of each category is as shown in Table 1.
For the projects in the prepared data set, there are their
names, categories, and descriptions.

For approach evaluation, we randomly choose
2000 projects from each category at a same ratio for
comparing different approaches. The left projects are
used in constructing the searching database. In the
remain parts of this paper, we use Evaluating Set re-
ferring to 2000 selected projects and Database for the
other projects. For training and testing the ranking
strategy, the evaluating set is utilized.

4 APPROACH

4.1 Database Preparation

There are three concrete searching methods in our
approach, namely, words matching, text semantic
matching and software category matching. For each
method, we need to prepare searching index based on
database.
Words Matching. For implementing efficient words
matching searching, we generate Inverted Index for
descriptions of software projects in our searching data
base. Inverted indexing technology for text character
matching is widely used in all kinds of search engines.
It represents the connection among texts to some ex-
tents, especially the Top-K searching results performs
well in most application scenario. We utilize inverted
indexing for modeling the text similarity from the
words matching perspective and provide similar soft-
ware projects as part of the integrated searching ap-
proach. We only retrieve keywords in the description
for generating the inverted index. The keywords are
those have top-25 TF-IDF (Term Frequency-Inverse
Document Frequency) values in each project descrip-
tion. We do not take stopwords into account in build-
ing the inverted index and the stopwords are those
in Default English stopwords list1. We adopt the
open-source search library Lucene2 for implementing
words matching.
Semantic Matching. In order to modeling deep se-
mantics in measuring software product similarity, we
adopt Doc2Vec (Le and Mikolov, 2014) for generat-
ing representation of software description. For cal-
culating similarities among a large number of texts,
a general method for transforming each text into a

1Defined here: https://www.ranks.nl/stopwords/
2Found here: http://lucene.apache.org/

fixed-length feature vector is needed. Doc2Vec is an
unsupervised algorithm that learns fixed-length fea-
ture representations from variable-length pieces of
texts, such as sentences, paragraphs, and documents.
In our approach, we apply the Doc2Vec tools pro-
vided by gensim3 to transform each software project
description into a dense vector. All projects in the
data set are used in training the Doc2Vec model. Val-
ues of core parameters for training are vector size =
150, window = 5, min count = 3. These values are
most frequently used in applying Doc2Vec tools. An-
other consideration is that the smaller the vector size
is, the higher the querying response efficiency is.
Clustering. In order to fasten the searching effi-
ciency, we apply k-Means(MacQueen et al., 1967)
clustering algorithm on derived document vectors of
projects in the database. Since clustering can cluster
the sample data with similar semantics, it can effec-
tively reduce the range of candidate sets and reduce
the time cost and noise impact caused by excessive
data. The vector similarity algorithm used in k-Means
is cosine similarity(Gomaa and Fahmy, 2013). The
number of clusters is set to 34, i.e., twice of the cat-
egory number. While the searching is requested, the
input project description will be firstly turn to a doc-
ument vector and then find the nearest cluster center.
The Top-K nearest projects in the same cluster will be
retrieved as similar projects. Details of querying will
be described in next subsection.
Category Matching. The first two parts of match-
ing have little relation of software engineering domain
knowledge. Software project taxonomy is one kind
of software engineering domain specific knowledge.
The category names are usually software property re-
lated words, such as Windows, Desktop Application,
Mobile Application, and Security. We could use soft-
ware category information of a project to represent
the project for searching similar ones. Inspired by
the neural network language model, we utilize ma-
chine learning methods to learn vectors of software
project’s category distribution from project descrip-
tion. We model this as a multiclass classification
problem. We try different machine learning algo-
rithms and different input feature representing meth-
ods. Combinations of learning algorithms and fea-
tures are as following:
(1) SVM + TF-IDF. We adopt the multiclass SVM
method which casts the multiclass classification prob-
lem into a single optimization problem. The tool we
use is libsvm4 developed by Chih-Chung Chang and

3Found here: https://radimrehurek.com/gensim/models/
doc2vec.html

4Found here: https://www.csie.ntu.edu.tw/∼cjlin/
libsvm/



Table 1: Statistics on software projects in the prepared data set.
Category # of projects Examples Category # of projects Examples

Development 4321 Hibernate, TortoiseSVN Security & Utilities 690 Tor Browser, ophcrack
System Administration 2554 ScpToolkit, Rufus Home & Education 596 Logisim, FMSLogo
Science & Engineering 2020 OpenCV, Octave Forge Desktop 574 3D Desktop, Adobe Flash Updater

Games 1626 Amidst, Antimicro Terminals 133 Alarm, BBSSH
Internet 1480 4chan Downloader, 51Degrees-PHP Multimedia 91 BlackBox ISO Burner, Joystick To Mouse

Business & Enterprise 1238 KeePass, GnuWin Mobile-apps 47 KeePass for J2ME, LineageOS on LeEco
Audio & Video 1105 Equalizer APO, ffdshow Formats and protocols 43 MoodleRest Java Library, Podcast Generator

Communications 1244 Moodle, Scrollout F1 Nonlisted Topics 6244 Pokemon Online, Pokemon–Dark Rift
Graphics 890 Sweet Home 3D, gnuplot Total Number of projects 24,896

Chih-Jen Lin. We use TF-IDF vectors to represent
each project’s description. The size of vocabulary is
50,000 because we choose to keep words with top-
50000 document frequency for representing each doc-
ument. For tuning the parameter of SVM algorithm,
i.e., Cost, we apply five-fold cross-validation on the
data set consisting of all projects in the database.
We choose the value for parameter –c that derives
the highest average predicting performance in cross-
validation. Details of evaluation metrics are described
in the experiment section.
(2) FNN + TF-IDF. Different from SVM’s construct-
ing separating gap, neural network is to build a map-
ping function between input data instance and its la-
bels. We firstly try simple full connected neural net-
work to learn a project category predictor. Each de-
scription of project is represented by the TF-IDF vec-
tor which is the same as used in SVM. We adopt sim-
ple settings for the fully connected neural network.
There are three hidden layers and they have 1,500,
750 and 17 neurons separately. The activation func-
tion is Tanh. The input and output layers have 50,000
and 17 neurons respectively. The output layer is also
a so f tmax layer applied on the third hidden layer.
(3) CNN + Word2Vec. Word2Vec (Mikolov et al.,
2013) is a novel model architecture for computing
continuous vector representations of words from very
large data sets. In our approach, we adopt Word2Vec
to train embedding for words. In our experiments, we
length of vectors for words is set to 150 which is the
same as that of vectors for the entire document.

Convolutional neural network uses convolution
kernel to extract local features, and integrates and an-
alyzes features in the way of multi-layer convolution,
which shows great advantages in image processing
(LeCun et al., 1998). We also try CNN with simple
settings in training project category predictor. The
number of input words of each project description is
equal to the average length of all descriptions in the
database, i.e., 46. For documents whose length is
more than 46, we use the middle 46 words to rep-
resent the document. Each word is represented by a
150-dimension vector derived from Word2Vec model.
We use three kernels of different sizes, namely 3, 4
and 5. There is only one convolution-pooling layer
for each kernel and eventually they are concatenated

together to predict the project categories. Like that in
fully connected neural network, the output layer is a
softmax layer.
(4) LSTM + Word2Vec. LSTM is an artificial recur-
rent neural network (RNN) architecture(Hochreiter
and Schmidhuber, 1997). Both CNN and LSTM can
be utilized as feature extracting approaches in pro-
cessing natural language texts. CNN extract effec-
tive features from the entire text while LSTM extract
effective semantic features specifically. In our ap-
proach, we only want to explore which one is better
in encoding project category distribution for search-
ing similar software projects among SVM, NN, CNN
and LSTM. So, we also adopt simple LSTM in train-
ing project category predictor.

There are some common settings for NN, CNN
and LSTM: (1) using tanh activation function, (2)
using Mean Squared Error loss function, (3) use
Stochastic Gradient Descent (SGD) loss optimizer,
and (4) softmax layer as output layer.

Upon the category distribution vectors of projects
in the database are derived, the clustering algorithm is
also applied for indexing projects.

4.2 Query

The querying process is intuitively described in Fig-
ure 1. The details of each modules’ work are illus-
trated as following:
Words Matching. Only non-stopwords are retrieved
in searching similar projects using inverted index.
The remained words in the description are trans-
ferred to the Lucene API to searching similar projects.
Eventually, top-10 projects returned by Lucene would
be used as the words matching similar projects.
Semantic Matching. The description of the input
project is firstly transformed into a 150-dimensional
document vector by the pre-trained Doc2Vec model.
Then the cosine similarity between the document vec-
tor and each cluster center are calculated. Upon the
nearest cluster is detected, top-10 nearest projects in
the cluster measured by cosine similarity algorithm
would be retrieved as ultimate similar projects of se-
mantic matching.
Category Matching. This process is the same as that
of the semantic matching searching. Firstly, the de-



scription of the input project is given to the pre-trained
category predictor to generate a category distribution
vector for the project. Then this vector is used to de-
tect the nearest cluster and retrieve the top-10 near-
est projects in that cluster with cosine similarity algo-
rithm.

As shown in Figure 1, for each input project, the
querying process would return three different lists of
similar projects retrieved by different approaches. We
would also manually evaluate the quality of different
lists of projects. Since different approaches has dif-
ferent similarity aspects consideration and each gives
some good feedbacks, we want to integrate their re-
sults by re-ranking the three lists of projects. Details
are illustrated in next subsection.

4.3 Ranking

Ranking approach is to conduct a secondary sort on
the three different tok-10 project lists returned by dif-
ferent searching strategies.

For each project in the evaluating set, its corre-
sponding thirty similar projects are retrieved through
three different matching approaches. Then, for each
project, each of their similar projects is manually an-
notated a score. Eventually, the similar projects can
be re-ranked according to the scores. The ranker to be
trained should predict the ultimate order of projects
as similar to manually ordering as possible. The input
project description is called a query and each result
is called a document. The task is to rank documents
belonging to a same query.

In this paper, we adopt pair-wise ranking al-
gorithm for re-ranking similar projects. It formu-
lates ranking task as a two-class classification prob-
lem(Clariana and Wallace, 2009) and focuses on rel-
ative preference between two items of a same query.
Let (xi, yi) and (x j, y j) be two result documents of a
same query, where x is the feature vector of the re-
sult and y is the score of the result, then a new data
instance (x

′
, y
′
)=(xi−x j, yi−y j) would be generated

for training the pair-wise ranker. The tool we use is
SVM Rank5. The following commonly used features
are adopted:

• TF-IDF vector of the document, i.e., descriptions
of result projects.

• Latent Dirichlet Allocation (i.e., LDA) topic
model vector of the document.

• Length of the document.

• The number of words that appear in both the query
and the document.

5Found here: http://www.cs.cornell.edu/people/tj/svm\
light/svm\ rank.html

• The one hot vector of unigram pairs in the (query,
document) pairs.

• The string edit distance between the query and the
document.

• The cosine similarity of doc2vecs and category
vectors between the query and the document.

• The searching approach, 0, 1 and 2 for Words, Se-
mantic and Category Matching respectively.

All features are calculated based on the keywords
extracted from each project’s description. We con-
duct five-fold cross-validation for evaluating using the
evaluating set.

5 EXPERIMENTS

In this section, we introduce the manual annotating
process and evaluation metrics.

5.1 Annotation

The annotators for annotating similarity between soft-
ware projects are second-year graduate students in
software engineering. Each group of projects are
annotated by five students. The average scores are
adopted as the ultimate scores for each project. The
annotators are asked to assign scores to the result
projects according to the input project. Six different
similarity aspects are considered in manually mea-
suring the similarity. If two projects have no com-
mon properties among the six aspects, then the score
is 0. If they match one more aspect, more scores
they should be assigned. Descriptions of these as-
pects and an example is shown in Table 2. We set
different scores for different aspects, i.e., Platform
and Architecture are 1 score while the others are 2
scores. Through manual annotating, projects in dif-
ferent searching result lists of all projects in the eval-
uating set would get manual scores representing their
similarities with the input projects.

5.2 Evaluation Metrics

For evaluating the classification performances of cat-
egory predictors, we use the precision, recall, and ac-
curacy values. Since the numbers of projects of dif-
ferent categories are imbalanced, the macro precision,
recall and F1 are also used in evaluation.

For comparing the performances of different ap-
proaches in searching similar software projects, we
compare the average manually annotated scores of
each project in the result list, i.e., Average Score. Be-
sides, we merge result lists of different approaches



Table 2: Descriptions of scoring aspects and the annotating example.

Scoring Aspects Description Example
√

/×

Platform
Products are used in the same platform, such as
mobile phones, laptops, servers, clusters, cloud,
etc.

This is a map
internet web
service based on
a huge raster
maps or satellite
images for
tracking and
monitoring the
mobile objects
(cars etc) using
GPS.

QLandkarte GT is the
ultimate outdoor
aficionado’s tool. It
supports GPS maps in
GeoTiff format as well
as Garmin’s img vector
map format. Additional
it is the PC side front
end to QLandkarte M, a
moving map application
for mobile devices.

√

Architecture Client, Server, Client/Server, Browser/Server,
etc. ×

Users No specific user group, developers, financiers,
designers, etc. ×

Domain Financial, Words, Painting, Game, Education, etc.
√

Tools Products are related the same third party
tools, libraries or other type of resources.

√

Function The products are to satisfy the same functional
requirements. ×

and re-rank projects according to their manually an-
notated scores. Then the Average Hit of Top-10
projects in the ranked list of different approaches are
calculated. The higher average score and average hit
are, the better the searching approach is.

For evaluating the ranking approach, we adopt the
commonly used evaluation metric Mean Average Pre-
cision (i.e., MAP) for algorithms that do information
retrieval.

5.3 Answering Research Questions

RQ1. Which machine learning method works best for
software type encoding in the searching scenario?
Results and Discussion: According to classification
performances showing in Table 3, the full connected
neural network using TF-IDF as input works best in
transforming project description into category distri-
bution vector. We also check the accuracy of top-k
categories predicted by classifiers in Table 3. It proves
that FNN with TF-IDF has better predicting capabil-
ity than others taking top-k categories into account.
The average manual annotated score shows the over-
all performance of each method. For further describ-
ing that the recommending performance of FNN is
better than others, we plot the average score curves
of Top-K recommended projects for each method. In
Figure 2(a), we calculate the average score of k-th
recommended project in the initial order. It shows
that FNN has the highest scores for all k-th projects.
In Figure 2(b), we firstly rank all recommended list
of each method for each evaluating project accord-
ing to the manual annotated scores, then calculate the
average scores of the ranked k-th projects on all the
evaluating projects and plot the score curves. Al-
though CNN achieves higher average scores for top-5
projects, the last 5 projects derives much lower scores
than FNN. The average scores of ranked list derived
by FNN is also higher than the other two methods. All
these details prove that FNN with TF-IDF as text fea-
tures is the best simple method for encoding software

project category distribution in the similar project re-
trieving scenario. In the following parts, FNN would
be used as the representative of Category Matching
approach.
RQ2. What are the performances of different search-
ing methods based on words matching, pure semantic
similarity and type semantic respectively?
Results and Discussion: According to average man-
ual scores shown in Table 4, the category matching
method achieves the best performance among all the
three approaches. However, there are no big dif-
ferences between the words matching and category
matching. The average hits at position 1 to 3 of
words matching is even much higher than twice of
that of the category matching, implying the most sim-
ilar projects could be derived by matching words. But
matching category distribution does better in retriev-
ing other similar projects. The average hits at other
top-k ranges of category matching are higher than
those of the other two methods. Note that there are
many projects derived by different methods tied for
tenth. It could be seen that category matching also
derives the most number of tied tenth. The MAP val-
ues represent the consistencies between manual or-
dering and searching ordering. So, category match-
ing can best represent people’s point of view in sort-
ing projects. We plot average scores and average hits
at each top-k position of different approaches in Fig-
ure 3. It shows that words matching does the best
in searching the most similar projects while category
matching does best on average. Since each approach
has some high quality feedbacks, using any one singly
as ultimate searching strategy is not a good strategy.
So we design the Ranking step.
RQ3. To what extent would the ranking strategy im-
proves searching performance while combining the
results of different searching methods?
Results and Discussion: Before ranking, there are six
different strategies for combining result lists of the
three searching approaches. All MAP values of these
strategies are shown in the first six columns of Table



Table 3: Evaluating results of different Category Predictors.

Method Macro Accuracy Average Scoreprecision recall F1 Top-1 Top-2 Top-3 Top-4 Top-5
SVM 0.475 0.230 0.445 0.475 0.593 0.642 0.685 0.716 4.246
FNN 0.641 0.507 0.566 0.581 0.717 0.786 0.837 0.863 5.258
CNN 0.553 0.317 0.403 0.428 0.602 0.687 0.743 0.797 4.996

LSTM 0.612 0.371 0.462 0.489 0.648 0.733 0.793 0.837 4.644

3

3.5

4

4.5

5

5.5

6

6.5

7

top1 top2 top3 top4 top5 top6 top7 top8 top9 top10

S
co

re

Index of result project

Average Scores of k-th Project after Ranking 

CNN
FNN
LSTM
SVM

3

3.5

4

4.5

5

5.5

top1 top2 top3 top4 top5 top6 top7 top8 top9 top10

S
co

re

Index of result project

Average Scores of k-th Project 

CNN
FNN
LSTM
SVM

(a) (b)

Figure 2: Average scores of k-th projects in the result list of different category predictors.

3

4

5

6

7

8

9

top1 top2 top3 top4 top5 top6 top7 top8 top9 top10

S
co

re

Index of result project

Average Scores of k-th Project 

Semantic

Words

Category

(a)

3

4

5

6

7

8

9

10

top1 top2 top3 top4 top5 top6 top7 top8 top9 top10

S
co

re

Index of result project

Average Scores of k-th Project after Ranking 

Semantic

Words

Category

0.01

0.21

0.41

0.61

0.81

1.01

1.21

1.41

1.61

1.81

top1 top2 top3 top4 top5 top6 top7 top8 top9 top10

H
it

Index of result project

Average Hit of k-th Project 

Semantic

Words

Category

(b) (c)

Figure 3: Average scores and average hits of different approaches at each Top-K position.

5. The last column of Table 5 is the MAP value of the
result lists automatically ranked by the trained ranker.
The other columns of After Ranking are MAP results
derived by projecting projects of the auto-ranked list
to the different approaches and then using different
strategies to combine them. The automatically ranked
project list of the searching result has slightly higher
MAP value for top-10 projects than the lists derived
from concatenating results of different searching ap-
proaches with different orders, for both before and
after ranking. But for the top-20 and top-30 MAP
values, the automatically ranked results does not as
good as combining in the order of Category Matching,
Words Matching and Semantic Matching. Comparing
the first three columns of Before and After Ranking,
we find that the ranker improves the project orders
for both category and semantic matching, but not the
words matching. Besides, Table 4 and Figure 3 tell
that the quality of the first several results in words
matching are much higher than that of the semantic
matching. Combining these clues, the ranker must
give some projects in the semantic matching result
higher priorities than some in the word matching re-
sult which should be put forward. Two CSW columns

and two CWS columns in Table 5 also tell that if
semantic matching results put in front of the words
matching results, the entire MAP value would be de-
clined. So, for improving the ranker, some features
that distinguish words matching results from seman-
tic matching ones should be designed and added. The
ultimat conclusion is that the best way to utilize the
ranker is to sort results of different approaches at first
and then concatenate them in the order of Category
Matching, Words Matching, and Semantic Matching.

6 CONCLUSION

In this paper, we propose an integrated approach
for retrieving similar projects from large-scale open-
source software repository with project description as
single input. For improving the traditional keywords
matching performance, we adopt semantic matching
and category distribution matching methods. For bet-
ter integrating the results derived by different match-
ing approaches, we adopt learn to rank algorithm to
train a ranker for re-sorting the searching results. The



Table 4: Evaluation results of three different searching approaches.

Method Average Score Average Hits MAP@10
@Top10 @1-3 @4-6 @7-9 @10 Initial Gold

Words 5.205 3.89 1.95 0.98 0.64 0.32 0.2929 0.389
Semantic 4.312 3.66 0.34 0.84 1.11 1.37 0.291 0.366
Category 5.258 4.89 0.71 1.18 1.25 1.75 0.404 0.489

Table 5: MAP values of different searching result lists.

MAP
@Top

Before Ranking After Ranking

WCS CWS SCW CSW SWC WSC WCS CWS SCW CSW SWC WSC Auto
10 0.2929 0.404 0.291 0.404 0.291 0.2929 0.2926↓ 0.406↑ 0.303↑ 0.406 0.303 0.292 0.407
20 0.273 0.303 0.235 0.273 0.227 0.233 0.272 0.304 0.241 0.275 0.233 0.234 0.301
30 0.226 0.247 0.213 0.239 0.212 0.216 0.227 0.248 0.217 0.240 0.216 0.217 0.247

experimental results show that the ranker derives a
slight improvement in MAP value at top-10 projects.

Design effective text features in training rankers
, analyze concrete effectiveness of different features,
find the way to omit the impact of imbalanced projects
distribution and train better category classifiersare,
and taking user requirements into consideration for
measuring project similarity are the future works of
this paper.

ACKNOWLEDGEMENTS

This work was supported by the National Natural
Sciences Foundation, China (No. 61802167), Open
Foundation of State key Laboratory of Network-
ing and Switching Technology (Beijing University
of Posts and Telecommunications) (SKLNST-2019-
2-15), and the Fundamental Research Funds for the
Central Universities. Jidong Ge is the corresponding
author.

REFERENCES

Clariana, R. B. and Wallace, P. (2009). A comparison
of pair-wise, list-wise, and clustering approaches for
eliciting structural knowledge. International Journal
of Instructional Media, 36(3):287–302.

Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine learning, 20(3):273–297.

Epelbaum, T. (2017). Deep learning: Technical introduc-
tion. arXiv preprint arXiv:1709.01412.

Gomaa, W. H. and Fahmy, A. A. (2013). A survey of text
similarity approaches. International Journal of Com-
puter Applications, 68(13):13–18.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.

Kawamitsu, N., Ishio, T., Kanda, T., Kula, R. G.,
De Roover, C., and Inoue, K. (2014). Identifying
source code reuse across repositories using lcs-based

source code similarity. In 2014 IEEE 14th Interna-
tional Working Conference on Source Code Analysis
and Manipulation, pages 305–314. IEEE.

Kim, Y. (2014). Convolutional neural networks for sentence
classification. arXiv preprint arXiv:1408.5882.

Le, Q. and Mikolov, T. (2014). Distributed representations
of sentences and documents. In International confer-
ence on machine learning, pages 1188–1196.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.

Li, Y., McLean, D., Bandar, Z. A., O’shea, J. D., and Crock-
ett, K. (2006). Sentence similarity based on seman-
tic nets and corpus statistics. IEEE transactions on
knowledge and data engineering, 18(8):1138–1150.

Liu, C., Jin, T., Hoi, S. C., Zhao, P., and Sun, J. (2017). Col-
laborative topic regression for online recommender
systems: an online and bayesian approach. Machine
Learning, 106(5):651–670.

Luo, L., Ming, J., Wu, D., Liu, P., and Zhu, S.
(2017). Semantics-based obfuscation-resilient binary
code similarity comparison with applications to soft-
ware and algorithm plagiarism detection. IEEE Trans-
actions on Software Engineering, 43(12):1157–1177.

MacQueen, J. et al. (1967). Some methods for classification
and analysis of multivariate observations. In Proceed-
ings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 1, pages 281–297.
Oakland, CA, USA.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.

Nagwani, N. K. (2015). A comment on “a similarity mea-
sure for text classification and clustering”. IEEE
Transactions on Knowledge and Data Engineering,
27(9):2589–2590.

Wang, S. and Wu, D. (2017). In-memory fuzzing for bi-
nary code similarity analysis. In Proceedings of the
32nd IEEE/ACM International Conference on Auto-
mated Software Engineering, pages 319–330. IEEE
Press.

Yao, L., Pan, Z., and Ning, H. (2018). Unlabeled short text
similarity with lstm encoder. IEEE Access, 7:3430–
3437.


